

ООО «Полесье» IT-решения в медицине

Працкевич Иван Михайлович

Генеральный директор

О ПРОЕКТЕ МОСТ

2020

Проект МОСТ был создан в начале 2020 года

МОСТ направлен на решение проблемы поставки и обработки данных физиологических параметров пациента для построения среды с возможностью дальнейшей обработки и использования искусственного интеллекта

Продолжение развития и улучшения технологии

МОСТ решает проблемы:

- 1. Отсутствие единого сервиса обращения с различными мед. данными
- 2. Сложность сбора консилиума врачей из разных точек страны для обмена информацией, консультировании друг с другом и принятия коллективных решения по методике лечения пациента.
- 3. Большой объем бумажной работы (75% времени врача) не позволяет врачу уделить 100% времени от приема пациенту освобождение времени врача для более целевых действий за счет автоматической синхронизации мед оборудования / ЦСМ с МИС и АРМ
- 4. Сложность доступа пациентов к своим мед данным из-за отказа клиник выдавать на руки сделанные у них исследования
- 5. Утеря персональных мед данных, поскольку врач из-за нехватки времени не вносит данные в монитор пациента/ЦСМ
- 6. Сложность дистанционного мониторинга пациентов, находящихся на лечение вне ЛПУ

УНИКАЛЬНОСТЬ И ПРЕИМУЩЕСТВА

MOCT осуществляет комплексную интеграцию нескольких систем, объединяя Dataset с различного медицинского оборудования, установленного в операционных, палатах реанимации и интенсивной терапии, и обеспечивает интеграцию данных с различными цифровыми сервисами, которые уже присутствуют в ЛПУ

- 1. Комплексный взгляд на поставку цифровых данных в медицине, когда подобные решения обеспечивают работу только с чем-то одним: числовые данные, видеосигнал и др
- 2. **Индивидуальный подход** под нужды клиента с кастомизацией ПО, что позволяет предоставлять лучшую цену на рынке, в то время как другие решения поставляются со стандартным функционалом
- 3. Использование в условиях АиР, домашнее наблюдение
- 4. Наличие модуля, который позволяет формировать дата сеты для обучения нейросетей (ИИ)
- 5. **Несколько вариантов реализации:** ЦОД для работы в условиях закрытого кода ЛПУ, серверная версия для частных практик
- 6. Более широкая целевая аудитория: врачи, клиники, пациенты

Конкуренты:

- РАИСа
 Philips Central Monitoring
- MVS VEGA
 Karl Storz OR1

КОНКУРЕНТНЫЙ АНАЛИЗ

	мост	РАИСа	MVS VEGA	Philips Central Monitoring	Karl Storz OR1	
Работа с данными	Комплексный взгляд на поставку цифровых данных в медицине	Работает только с числовыми данными	Работает только с видеосигналом	Работает с цифрой	Работает с видеоизображения ми	
Среда использования	Использование в условиях АиР, домашнее наблюдение	Только в условиях клиники (реанимации)	Только в условиях клиники (операционной)	Крупные федеральные центры	Крупные ЛПУ	
Использование ИИ	Модуль который позволяет формировать дата сеты для обучения нейросетей (ИИ)	В разработке	-	Есть	-	
Возможности реализации	 ЦОД для работы в условиях закрытого кода ЛПУ Серверная версия для использования врачами частных практик 	Только серверная версия (клиент покупает доступ на сервер)	цод	цод	ЦОД	
Целевая аудитория	Врачи, клиники, пациенты	Клиники (возможно врачи)	Врачи	Врачи, клиники	Клиники	

ПИЛОТНЫЕ ИСПЫТАНИЯ И АПРОБАЦИЯ

Пилотирование

- СПб ГБУЗ Городская поликлиника № 44
- Больница им.Калинина, Донецкая область

Апробация

- ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России (только закончилась)
- Республиканский онкологический центр им. профессора Г.В. Бондаря (идет апробация)

Апробация в планах

- ФГБУ «НМИЦ ТО им. Р.Р. Вредена» (ведутся переговоры)
- Городская клиническая больница № 31 г. Санкт-Петербург (ведутся переговоры)

Решение успешно прошло пилотные испытания и апробацию в ФГБУ «НМИЦ им. В. А. Алмазова». Ведутся переговоры по внедрению решения в ЛПУ по итогам апробации. На данный момент решение апробируется в Республиканском онкологическом центре им. профессора Г.В. Бондаря. Также ведутся переговоры с другими ЛПУ

ЭФФЕКТЫ ПРИ ВНЕДРЕНИИ РЕШЕНИЯ

Работа с видеосигналом

- Захват и обработка видеосигнала с камер эндоскопов, операционных светильников, видеокамер в палате, трансляция в режиме реального времени
- Создание видеоархива операций с возможностью перемотки на заданный промежуток времени, не прерывая текущую запись

Цифровые данные

- Отображение и анализ данных с мониторов пациента, инфузионной техники, наркозных аппаратов, аппаратов ИВЛ.
- Получение данных с ADT (сервера хранилищ личных данных пациентов)
- Интеграция с информационными системами (Ариадна, QMS, Медиалог и другие)
- о Сохранение полученных данных в СУБД
- Хранение данных пациентов в электронной медицинской карте, анализ данных и прогнозирование течения патологического процесса

Документы и отчеты

- Генерирование отчетов и доступ к любым данным из истории пациентов
- о Создание форм клинических документов

Искусственный интеллект

- Интеграция данных с различными цифровыми сервисами, которые уже присутствуют в ЛПУ.
- Создание наборов Big Data, анонимизированных данных для обработки и построения алгоритмов анализа СППВР

Системы контроля и мониторинга

- Удаленный мониторинг
- Единая контрольная панель оборудования (ІТ оборудование, инженерное оборудование)

СОЦИАЛЬНАЯ ЗНАЧИМОСТЬ

Улучшение качества здравоохранения

СППВР могут помочь врачам принимать более точные и основанные на доказательствах решения.

Снижение затрат на здравоохранение

Оптимизация процессов, автоматизация рутинных задач и более эффективное использование ресурсов благодаря СППВР и ИИ могут помочь снизить затраты на здравоохранение.

Повышение безопасности и удовлетворенности пациентов

Использование СППВР и ИИ позволяет предоставлять пациентам более точные и индивидуализированные рекомендации по лечению, а также снижает вероятность ошибок

Расширение доступа к медицинской помощи

СППВР и технологии телемедицины могут расширить доступ к медицинской помощи для пациентов в удаленных или недостаточно обслуживаемых районах

Улучшение мониторинга и прогнозирование общественного здоровья

Анализ медицинских данных и использование алгоритмов машинного обучения позволяют отслеживать и прогнозировать распространение заболеваний, эпидемий и пандемий.

Облегчение совместной работы и обмена информацией

СППВР и ИИ могут упростить совместную работу врачей, позволяя им обмениваться информацией, консультироваться друг с другом и принимать коллективные решения

ТОЧКИ ПРИМЕНЕНИЯ НАШЕГО РЕШЕНИЯ

Скорая помощь

- Сканирование штрих-кода
- Получение демографических АТД данных пациента

Транспортировка в операционную

- Беспроводная передача данных пациента и показателей жизнедеятельности
- Синхронизация данных после транспортировки

Операционная

- о Интерфейс сторонних систем
- Интегрирование и передача данных в PDMS

Транспортировка в отделение интенсивной терапии

- Интегрирование сторонних систем
- Решения для удаленного мониторинга

Отделение интенсивной терапии

- Выбор целевой центральной станции на транспорте
- Беспроводная передача в реальном времени или синхронизация впоследствии

Решение для общих палат и домашнего наблюдения

- Экраны выборочной проверки, интегрированные во врачебный обход
- Система раннего предупреждения для стандартизации

РЕАЛИЗОВАННЫЙ КЕЙС

Схема работы при использовании телемониторинга

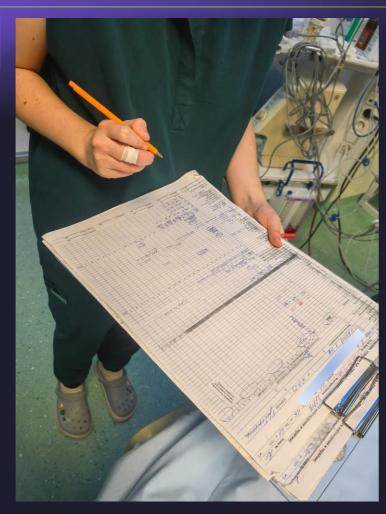
Передача данных на центральную систему мониторинга

Консультация

Госпитализация

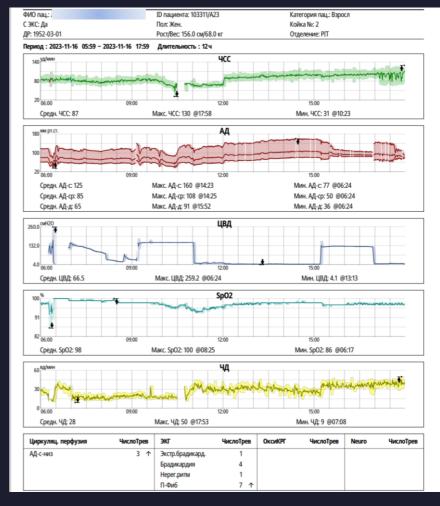
Пациент с монитором Benevision N1 Координационный центр

ДЕНЬ


наблюдает врач-терапевт (сотрудник центра управления сердечно- сосудистыми рисками) мониторинг ведется в отделении неотложной помощи

ночь

РЕАЛИЗОВАННЫЙ КЕЙС



Было

Медперсонал каждые 2 часа записывает показатели мониторов для заполнения документа

Стало

Система готовит структурированные отчеты, выделяет и подсвечивает необходимые для специалистов параметры

Примеры автоматически заполненных документов

Документы заполняются автоматически, показатели приборов доступны на АРМ врача

Подключен модуль интеграции УЗИ для сохранения и обработки результатов исследования

ПРИВЛЕЧЕНИЕ ИНВЕСТИЦИЙ

Проект финансируется за счет собственных средств компании.

Статьи расходов:

Маркетинг 20% Расширение материально-технической базы 30% Оплата текущей команды 30% Расширение команды 20%

Предложение для инвестора (5% доли компании)

Год	Дивиденты			
тод	млн.р			
2024	5			
2025	19			
2026	46			

Инвестиции, млн руб.

- 1 раунд. Запуск продаж
- 2 раунд. Доработка ПО до полноценного портала (создание экосистемы)
- 3 раунд. Запуск мобильного приложения
- 4 раунд. Масштабирование по РФ
- 5 раунд. Выход на зарубежные рынки

О ПРОЕКТЕ

2020

Проект МОСТ был создан в начале 2020 года.

МОСТ направлен на решение проблемы поставки и обработки данных физиологических параметров пациента для построения среды с возможностью дальнейшей обработки и использования искусственного интеллекта.

TRL7

Продолжение развития и улучшения технологии

Наша технология:

- 1. Телекоммуникационные технологии, связывающие в единую сеть медицинское оборудование
- 2. Создание наборов Big Data
- 3. Дальнейшая обработка данных с помощью искусственного интеллекта и построение алгоритмов анализа СППВР

Разработка

МОСТ разрабатывался и тестировался на базе компании ООО «Техно Медицина»

Пилотирование

- СПб ГБУЗ Городская поликлиника № 44
- Больница им. Калинина,
 Донецкая область.

Апробация сегодня <u>-</u>

ФГБУ «НМИЦ им. В. А. Алмазова»Минздрава России.

МОСТ осуществляет комплексную интеграцию нескольких систем, объединяя Dataset с различного медицинского оборудования, установленного в операционных, палатах реанимации и интенсивной терапии, и обеспечивая интеграцию данных с различными цифровыми сервисами, которые уже присутствуют в ЛПУ

Функционал

- 1. Наличие мобильного приложения для врача и пациента с функционалом, позволяющим отслеживать физиологические параметры пациента, осуществлять их передачу, обмен файлами DICOM
- 2. Возможность взаимодействия с медицинским оборудованием по принципу plug & play
- 3. Платформонезависимость

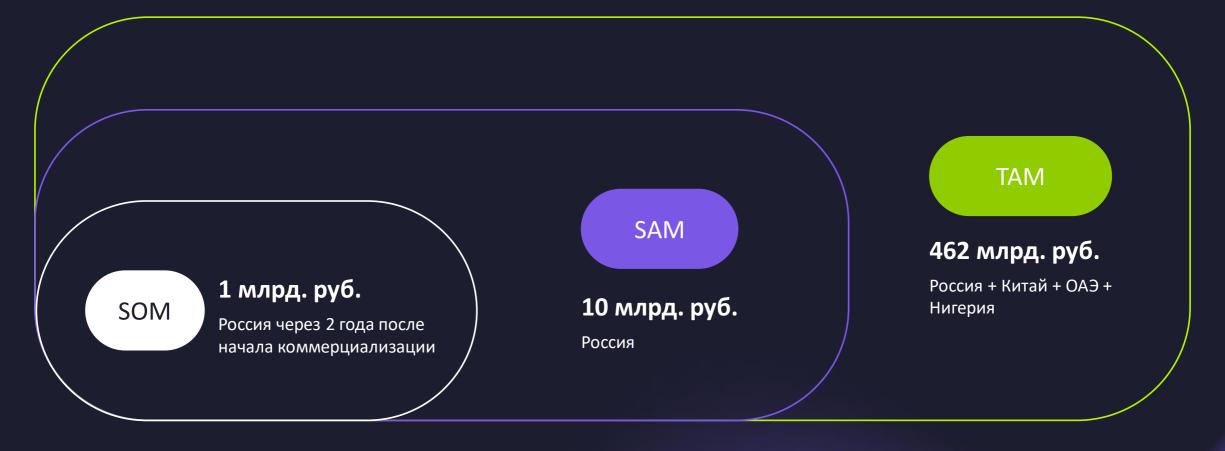
ОРИТ

Операционная

Кардиология

Палата пробуждения, ПИТ

- Оценка гемодинамики
- Оценка септического статуса
- Оценка сознательного состояния


о Баланс анестезии

○ Оценка значений ST

- Оценка ухудшения состояния госпитализированных пациентов из группы риска
- Оценка септического статуса

ОБЪЁМ РЫНКА

Целевая аудитория	Россия	Китай	ОАЭ	Нигерия
Государственные клиники	5100	11 804	53	105
Частные клиники	10000	24 766	107	61

БИЗНЕС-МОДЕЛЬ

Коммерциализация

- Продажа лицензии на ПО
- Аренда серверного оборудования
- Продажа серверного оборудования
- Техническое обслуживание
- о Обучение врачей работе, курсы повышения квалификации

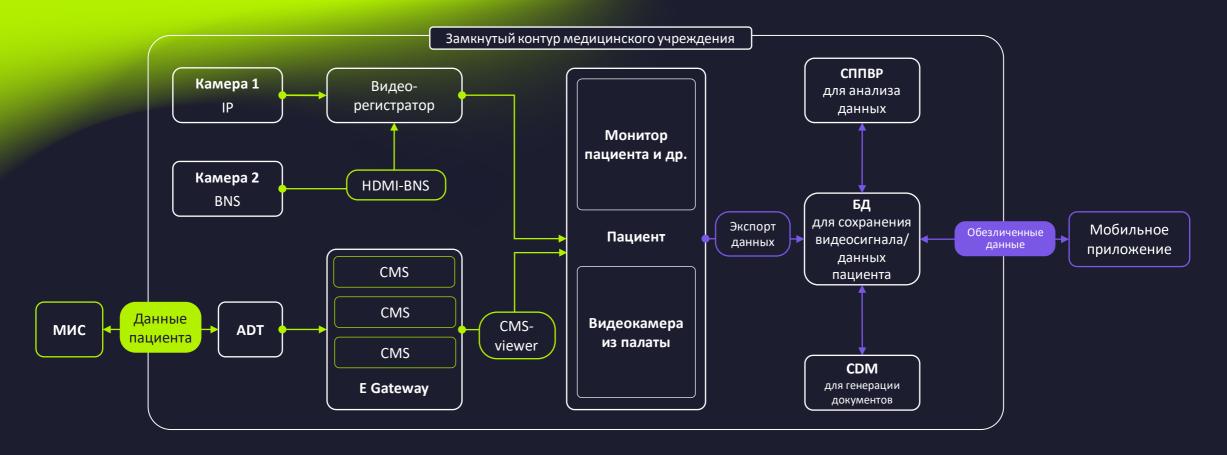
 $^{\sim}$ 500 тыс. руб. 1 койка, ежегодная лицензия

~1.8 млн. руб. в год

~ 4.8 млн. руб.

ДОРОЖНАЯ КАРТА

2013 2022 2023 2024 2025 2020 о Одни из первых Закупка Разработка Захват и обработка • Обработка Импортозамещение в России стали систем Phillips, Drager, серверного цифровых решения для видеосигнала с дистрибьюторам оборудования Olimpus, Karl Storz телемониторинга камер эндоскопов, параметров и китайского с возможностью пациента с операционных Прототипирование Создание единой медицинского светильников, помощью ИИ, удаленного операционной, системы оборудования. создание Big Data мониторинга хранение и объединение взаимодействия обработка пациента оборудование в • Создание кастомных между различными информации модулей СППВР БД для приложениями в ЛПУ сеть электронной Внедрение СППВР • Запуск мобильного Создание среды медицинской по медицинским приложения децентрализованной карты пациента шкалам медицинской помощи • Адаптация решения Выход на зарубежные для использования технологии рынки блокчейн


СППВР: Обзор

Название	Описание					
Оценка гемодинамики	Визуализация гемодинамики. Помощь в просмотре сложных данных гемодинамики и лечении гемодинамических заболеваний					
Оценка ST	Помощь кардиологу в просмотре и оценке значений ST путем графической визуализации изменений ST					
Оценка септического статуса	Раннее распознавание сепсиса. Шкалы SOFA, qSOFA					
Оценка ухудшения состояния госпитализированных пациентов из группы риска	Помощь в распознавании ухудшения состояния пациента на ранней стадии, используя стандартизированные протоколы измерения (например, MEWS, NEWS)					
Оценка сознательного состояния	Интеграция шкалы комы Глазго для оценки состояния сознания пациента					
Баланс анестезии	Визуализация анестезии на отдельных этапах (введение, поддержание, восстановление). Шкала Альдрета					

АРХИТЕКТУРА ПО

- 1. Видеорегистратор получает данные с камер
- 2. Монитор получает данные о пациенте с МИС при помощи ADT блока
- 3. Монитор подключается к ЦС

- 4. Видеопоток с видеорегистратора подается при помощи WebRTC на систему
- 5. Полученные данные с CMS-viewer выгружаются в систему
- 6. Данные с ЦС сохраняются в БД

- 7. Генерируются документы при необходимости
- 8. Данные обрабатываются модулем СППВР и выдается прогноз пациента
- 9. Обезличенные данные передаются в мобильное приложение/веб-сервер

СТРАТЕГИЯ УПРАВЛЕНИЯ РИСКАМИ. МАТРИЦА РИСКОВ

Предполагаемые риски

Риск A - Срывы поставок поставщиками комплектующих изделий и материалов. Находится в зоне средней угрозы для реализации стратегии.

Риск В - Поломки оборудования, влекущие остановку процесса. Находится в зоне низкой угрозы для реализации стратегии.

Риск С - Хакерская атака с целью хищения персональных данных. Находится в зоне низкой угрозы для реализации стратегии.

Риск D - Миграция кадров вследствие осложнения политической ситуации. Находится в зоне средней угрозы для реализации стратегии.

Риск Е- Использование интеллектуальной собственности другими компаниями, кража идеи. Находится в зоне средней угрозы для реализации стратегии.

Вероятность	Угрозы								
0,90	0,05	0,09	0,18	0,36	0,72				
0,70	0,04	0,07	0,14	0,28	0,56				
0,50	0,03	0,05	D 0,10	0,20	0,40				
0,30	0,02	0,03	A 0,06	E 0,12	0,24				
0,10	0,01	B0,01	0,02 ©0,04		0,08				
	0,05 очень низкий	0,1 низкий	0,2 средний	0,4 высокий	0,8 очень высокий				

Меры по снижению тяжести последствий

Риск А Увеличение запасов по проблемным позициям.

Риск В Увеличение запасов, предоставление подменного оборудования. Наличие специалистов технической поддержки.

Риск С Оперативное реагирование команды специалистов.

Риск **D** Наличие кадрового резерва.

Меры по предупреждению рисков

Риск А Альтернативные надежные поставщики. Собственное производство комплектующих.

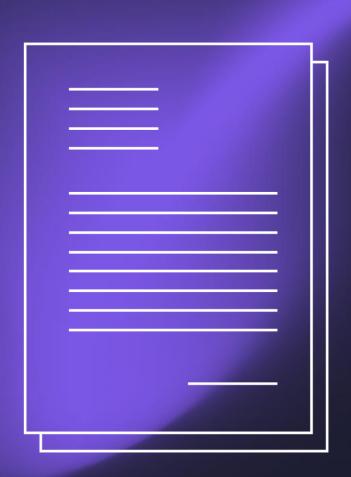
Риск В Планово-предупредительное обслуживание и ремонт.

Риск C Защищенные протоколы передачи данных, дополнительные модули повышенной безопасности, обновление систем безопасности в ЛПУ.

Риск D Повышение мотивации, конкурентные условия оплаты труда.

Риск Е Защита интеллектуальной собственности, получение патента.

ПРАВОВАЯ СТРУКТУРА



ООО «Полесье»

аккредитованная IT компания, ООО, так как это обеспечивает больший потенциал для роста компании, бизнес продается и покупается, можно привлекать инвесторов.

Количество учредителей

один

ЗАВИСИМОСТЬ ОТ ИМПОРТНЫХ КОМПЛЕКТУЮЩИХ

Средняя степень зависимости

В случае, недоступности или задержки в поставках, которые могут оказывать негативное влияние на предоставление услуг мы переходим на альтернативного поставщика или рассматриваем возможность запуска производства по самостоятельной сборке серверного оборудования.

Пример

Ссылка

Переход с серверной системы от Huawei на российскую серверную операционную систему (ОС) Platform V SberLinux OS Server

ЗАЩИТА ДАННЫХ ПАЦИЕНТОВ

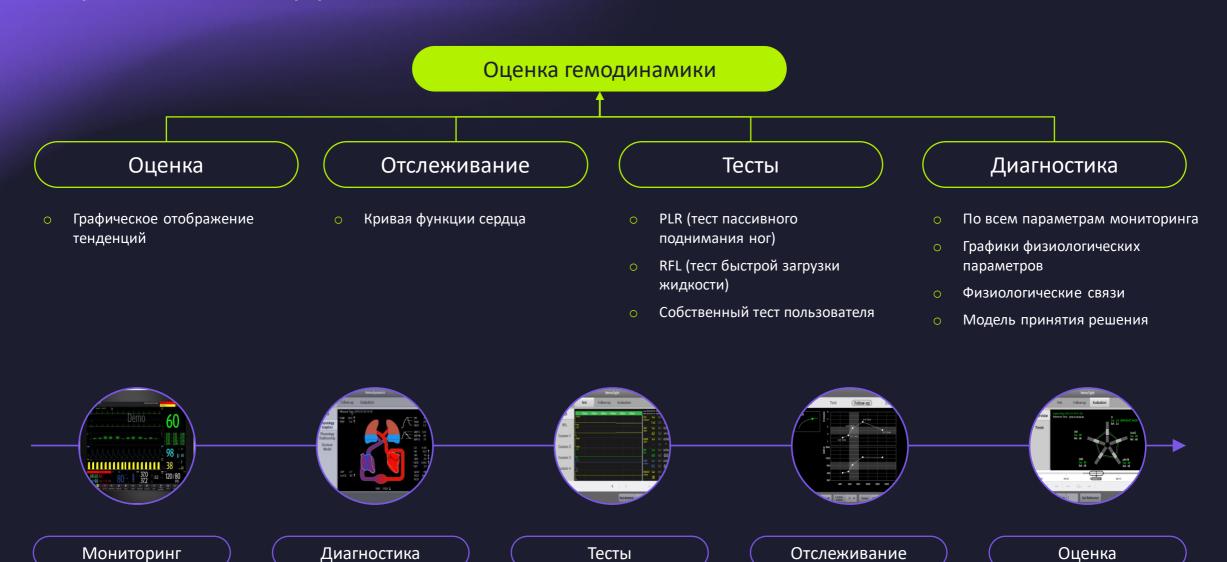
В соответствии с законами № 323-Ф3 «Об основах охраны здоровья граждан в РФ» и № 152-Ф3 «О персональных данных» наше решение использует алгоритмы по преобразованию данных в ключ, который присваивается пациенту.

Разработка и партнерство с ИТМО

Вне закрытого контура ЛПУ (например, на мобильное приложение) данные пациента передаются обезличенно, то есть номер койки и физиологические параметры пациента.

ФИНАНСОВАЯ МОДЕЛЬ. СБАЛАНСИРОВАННЫЙ СЦЕНАРИЙ

Месяцы	дек 2023	янв 2024	фев 2024	мар 2024	апр 2024	май 2024	июн 2024	июл 2024	авг 2024	сен 2024	окт 2024	ноя 2024	Итого за год
Остаток на счете на начало периода	2 000 000 ₽												2 000 000 ₽
Первоначальные вложения владельца	55 000 000 ₽												
Доходы	10 000 000 ₽	0₽	7 000 000 ₽	7 000 000 ₽	7 000 000 ₽	14 000 000 ₽	14 000 000 ₽	21 000 000 ₽	21 000 000 ₽	28 000 000 ₽	35 000 000 ₽	35 000 000 ₽	199 000 000 ₽
Количество сделок	1	0	1	1	1	2	2	3	3	4	5	5	28
Средний чек	10000000	0	7000000	7000000	7000000	7000000	7000000	7000000	7000000	7000000	7000000	7000000	
Расходы	4 760 000 ₽	760 000 ₽	2 760 000 ₽	4 760 000 ₽	4 860 000 ₽	6 860 000 ₽	6 860 000 ₽	6 860 000 ₽	10 860 000 ₽	10 860 000 ₽	10 860 000 ₽	10 860 050 ₽	81 920 000 ₽
Комплектующие для ПО	4 000 000	0	2 000 000	4 000 000	4 000 000	6 000 000	6 000 000	6 000 000	10 000 000	10 000 000	10 000 000	10 000 000	72 000 000
Зарплата	600 000	600 000	600 000	600 000	700 000	700 000	700 000	700 000	700 000	700 000	700 000	700 000	8 000 000
Маркетинговые мероприятия	100 000	100 000	100 000	100 000	100 000	100 000	100 000	100 000	100 000	100 000	100 000	100 000	1 200 000
Офис	50 000	50 000	50 000	50 000	50 000	50 000	50 000	50 000	50 000	50 000	50 000	50 000	600 000
Прочие	10 000	10 000	10 000	10 000	10 000	10 000	10 000	10 000	10 000	10 000	10 000	10 000	120 000
—————————————————————————————————————	0	0	0	0	0	0	0	0	0	0	0	0	0
Прибыль	5 2400 000 ₽	-760 000 ₽	4 240 000 ₽	2 240 000 ₽	2 140 000 ₽	7 140 000 ₽	7 140 000 ₽	14 140 000 ₽	10 140 000 ₽	17 140 000 ₽	24 140 000 ₽	24 140 000 ₽	117 080 000 ₽
Рентабельность	52%		61%	32%	31%	51%	51%	67%	48%	61%	69%	69%	59%
Остатки на счете													
Начало месяца	0	7 240 000	6 480 000	10 720 000	12 960 000	15 100 000	22 240 000	29 380 000	43 520 000	53 660 000	70 800 000	94 940 000	0
Конец месяца	7 240 000	6 480 000	10 720 000	12 960 000	15 100 000	22 240 000	29 380 000	43 520 000	53 660 000	70 800 000	94 940 000	119 080 000	64 080 000


Пояснения к модели

- С мая 2024 ПО вносится в реестр российского ПО
- Данная финансовая модель рассчитана для продажи лицензии на ПО и считается реально достижимой, так как имеется наработанная клиентская база

ОЦЕНКА ГЕМОДИНАМИКИ

Оценка

ОЦЕНКА СЕПТИЧЕСКОГО СТАТУСА

Методы скрининга сепсиса: SOFA и qSOFA

SOFA

Последовательная оценка органной недостаточности. Если балл ≥ 2, пациент соответствует критериям скрининга на сепсис.

- PaO2/FiO2
- Тромбоциты
- о Билирубин
- Сердечно-сосудистая система
- Шкала комы Глазго
- Креатинин
- о Диурез

qSOFA

Быстрая оценка SOFA. Если оценка больше 2, подозрение на сепсис сохраняется.

- о Частота дыхания
- Систолическое давление крови
- Изменения психического состояния

БАЛАНС АНЕСТЕЗИИ: ШКАЛА АЛЬДРЕТА

Применение

Шкала Альдрета используется для оценки восстановления после наркоза

Параметры

Оценка ≥ 9 указывает на то, что пациент готов к экстубации. Наблюдайте 15 минут, чтобы убедиться, что состояние пациента нормальное. Затем пациента можно перевести из операционной

ОЦЕНКА СОЗНАТЕЛЬНОГО СОСТОЯНИЯ. ШКАЛА КОМЫ ГЛАЗГО

Для кого	Предназначена для использования у взрослых и детей					
Для чего	Шкала комы Глазго (GCS) направлена на предоставление надежного и объективного способа регистрации сознательного состояния человека перед началом лечения, а также для сравнения с последующей оценкой.					
Измеряемые элементы	 реакция глаз (E) вербальная реакция (V) двигательная реакция (М) 					
Уровни оценки	Оценка делится на три уровня. Пользователь изменяет их в меню САА: о Высокий: от 3 до 4 о Средний: от 5 до 11 о Низкий: от 12 до 15					
Время отчета	Предоставляет отчеты в реальном времени с регистратора или принтера.					
Формат данных	Предоставляет тенденции в виде таблицы и печать отчетов.					

ОЦЕНКА УХУДШЕНИЯ СОСТОЯНИЯ ГОСПИТАЛИЗИРОВАННЫХ ПАЦИЕНТОВ ИЗ ГРУППЫ РИСКА

MEWS

- частота пульса
- о систолическое артериальное давление
- частота дыхания
- о температура
- уровень сознания

NEWS

принимает во внимание дополнительный кислород и насыщение кислородом наряду с MEWS. Она также стандартизирует цвет, представляющий каждый уровень тяжести и клинические ответы.

• Шкалы MEWS и NEWS применимы только для взрослых.

Poles-e